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Analytic structure of vortex sheet dynamics. 
Part 1. Kelvin-Helmholtz instability 

By DANIEL I. MEIRON, GREGORY R. BAKER 
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Massachusetts Institute of Technology, Department of Mathematics, 
Cambridge, MA 02139 

(Reccivcd 5 January 1981 and in revised form 28 May 1981) 

The instabilit,y of an initially flat vortex sheet to a sinusoidal perturbation of the 
vorticity is studied by means of high-order Taylor series in time t .  All finite-amplitude 
corrections are retained at each order in t .  Our analysis indicates that the sheet 
develops a curvature singularity at  t = t, < 00. The variation oft, with the amplitude 
a of the perturbation vorticity is in good agreement with the asymptotic results of 
Moore. When a is O( I ) ,  the Fourier coefficient of order n decays slightly faster than 
predicted by Moore. Extensions of the present prototype of Kelvin-Helmholtz 
instability to other layered flows, such as Rayleigh-Taylor instability, are indicated. 

1. Introduction 
It is well known that,, in the absence of gravity or surface tension, tangential shear 

at  a sharp interface is always destabilizing. For the classical Kelvin-Helmholtz 
instability, the linearized evolution of a normal mode with amplitude A(k , t )  and 
wavenumber k is given by 

-- - a2A(k ,  t ) ,  d214 (k, t )  
d t2  

where 

u and u' are the unperturbed velocities on either side of the interface and p and pt 
are the corresponding densities (see figure 1). 

The disturbance grows at  a rate u ( k )  which is directly proportional to the wave- 
number k. As a result, an initial condition which is analytic in a finite strip (as reflected 
in the exponential decay of its Fourier coefficients with increasing wavenumber) will 
lose its analyticity after a finite time. At this critical time, the normal modes decay only 
as some algebraic power of the wavenumber and the interface develops a singularity. 

The nonlinear dynamics of the interface can be expressed in terms of the  dynamics 
of a vortex sheet. If p = pf and u = - uf then the interface, 

z ( e ,  t )  = x ( e ,  t )  + i y ( e ,  t ) ,  

satisfies the Birkhoff (1962) equation 

I 0  
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FIGURE 1, Flow geometry for the Kelvin-Helmholt,z instabilit,y. 

For convenience we refer to y as the vortex sheet strength, although the true strength 
of the sheet is y(e,  t ) / (ds /de) ,  where 

ds de = ( (g)2+ (g)2)4. 
Also, the sheet strength y(e,  1 )  is invariant along particle paths: 

If the initial disturbances z(e,  0) and y(e, 0) are periodic in the Lagrangian marker 
variable e ,  then the resulting sheet roll-up is also periodic in e .  Thus, the interface z 
satisfies a periodic form of the Birkhoff equation, namely, 

where the periodicity interval is 0 < e < 2n. 
It may be thought that nonlinear interactions restore the ‘well-posedness’ of the 

roll-up problem. Indeed, Sulem et al. (1982) have shown that an initially analytic 
interface remains so a t  least for a finite time. However, fully nonlinear numerical 
studies of Kelvin-Helmholtz instability using variants of the point vortex method 
give results that are unreliable (Van de Vooren 1965). As the number of vortex markers 
is increased chaotic vortex motion sets in at progressively earlier times. This evidence 
has led Birkhoff (1962) and Saffman & Baker (1979) to speculate that the solution of 
the nonlinear problem develops a singularity after a finite time. Such a singularity 
would not be inconsistent with the rigorous results of Sulem et al. 

Recent numerical and analytical work by Damms (1978, unpublished), Moore 
(1979), respectively, give evidence that a weak singularity of the sheet does form 
after A finite time. They consider the problem in which 

z ( e , O )  = e+Esine, y(e,O) = 1. (1.4) 
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Then, the interface has the Fourier representation 

m 

m= -m 
z(e, t )  = e + A,@) exp (ime), 

with A,a = -A,. Substituting the series (1.5) into (1.1) gives an infinite system of 
first-order differential equations for A&). Each equation haa an infinite number of 
terms due to the complicated nonlinearity of the Birkhoff equation (1.1). Moore’s 
asymptotic analysis takes into account the leading finite-amplitude corrections to 
linear theory. Each Fourier coefficient A,(t) is expanded in the form 

(1.6) 

and the subsystem of differential equations for A,, is studied in detail. At a critical 
time t&) given to first order by 

(1.7) 

the coefficients A,, decay like m-i, indicating that z is no longer analytic in e. Damms 
(unpublished) has integrated numerically a truncated version of the evolution equa- 
tions for the coefficients A,(t) and found good agreement with the asymptotics ob- 
tained at  lowest order for small E. 

In  the present work a prototype of the Kelvin-Helmholtz instability is proposed 
and examined. For our prototype problem, the sheet is initially flat but is set into 
motion impulsively by a sinusoidal disturbance of y(e) : 

Am(t) = ~l~lA, , ( t )  + ~ l ~ + ~ l A , ~ ( t )  + ~ l ~ + ~ l A , ~ ( t )  + . . . 

1 + itc + In t, = In ( 4 / ~ ) ,  

z(e , t  = 0 )  = e ,  y(e, t  = 0 )  = l+acose. (1.8) 

In  $ 2  it is shown that the asymptotic behaviour of the leading nonlinear correc- 
tions to the modal amplitudes is very similar to that found by Moore for initial 
condition (1.4). In  8 3 the effects of the higher-order finite-amplitude corrections are 
examined by representing the solution as a Taylor series in time. The prototype initial 
condition (1.8) has the property that the Taylor series coefficient of z(e,  t )  at any order 
O(tm) may be written as a finite Fourier series in e with n modes. The amplitudes of 
the modes are computed exactly using a spectral method. As a result of the simple 
structure of the series all finite-amplitude effects are incorporated a t  each order in 
time. Similar prototypical systems have been used to study the analytic structure of 
the Euler equations by Morf, Orszag & Frisch (1980). The singularity structure of the 
series is deduced using Pad6 approximants and the ratio method in $ 4. 

2. Moore’s asymptotic analysis 
We follow Moore in deriving the modal evolution equations for the prototype 

problem (l.l), (1.2) with initial condition (1.8). The substitution e’ = e+u in (1.1) 
gives 

where 

z(e , t ) -z(e+u, t )  = -u+ 2 A,(t)exp(ime)[l-exp(imu)] = -u+s(u,e) .  (2.1) 
m= -Q  

10-2 
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Substituting (2.1) into (1.1) gives 
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dA?, 1 O0 du 
exp (ime) = -7 PI - [I + iaexp (i(e +u)) + aaexp ( - i ( e+  u))] 

ni= x d t  --m 2na -a u 

1 [ u u2 
8 8, 

x 1+-+-+ ... . 

Equating coefficients of exp (ime) gives the modal evolution equations 

I 
exp(iu)(l -exp(ir,u)) ... (l-exp(ir ,u))~-(~+l)du, 

exp ( - iu) (1 - exp (irlu)) . . . (1 - exp (irku)) u-(k+l) du. 

The sums in (2.2) range over all positive and negative integers so that each term 
has an infinite number of contributions. By introducing the ordering A, = O(alml) and 
its associated expansion 

A, = An,,alml + A,,alm+zl + . . , , 
the system (2.2) reduces to subsystems for A,, Am,, etc. The subsystem for A,, is 
especially simple in that only positive values of the indices rl, r,, . . ., r, occur. The 
sums involving the integral K are of higher order than O(alml) and so only contribute 
to the higher-order subsystems. As the indices rl, r2, . . . , r,  are all positive the integrals 
I and J may be evaluated by residues 

(2.4) r2, ..., r,) = J(rl, r,, ..., r,) = n( -i),-l r1r2 ... rk. 
The equations for A,, are, noting that A,(t) = -Am@), 

-- 'A' - +[(-i)A,,++], 
at 

so = &[Amo( - i) m + 4Am-l,o( - i) (m - 1) 
at 

+ E 
rl+ra=m 

410Ars0(-i)2rir2++ rl + ra Z =m - 1 Ar10Art0(-i)2r1r2 

+...+ z ArloAr80... Arko( -i),r1r2 ... r, 

+*  Z ArloArsO ... Arko( -i) ,r1r2 ... r,., 
TI t ra+ ... +rr = m 

rl+ra+ ... + r i = m -  1 
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with the homogeneous initial condition 

A,,(t = 0 )  = 0. (2.6) 

The inhomogeneous term in the equation for A,, reflects the initial condition (1.8). 
As the equation for A,, is linear with an inhomogeneous term involving only those 
coefficients A,, for which 1 < j < m - 1, the system (2.5) may be solved recursively. 
The solutions for AIO, A2,, and A,, are 

Al,(t) = 4 sinh it + &i(cosh it - l),  

A,(t) = [At cosh t - & sinh t + 4 sinh it)] 
+i[&t sinht - + cosht + & cosh i t  - +], 

A,,(t) = [Atasinh Qt - &t cosh #t +#& sinh #t 
+ At cosh t - & sinh t - &t cosh it + 
+ i [ &t2 cosh Qt - &t sinh #t + & cosh j t  

sinh it] 

+&t sinh t - + cosht -&t sinh it +&& cosh it - Q ] .  (2.7) 

From these first three solutions it is clear that 

A,, 2: exp(&mt)[h~~)t"-l+h(1)tm-2+ m ...I+ O(exp(&(m- 1 ) t ) ) .  

The terms in the subsystem for A,,,, arising from the condition &r, = m- 1 are 
O(exp (&(m - 1) t ) ) .  The dominant balance therefore involves only those terms which 
occur in the corresponding system for the initial condition studied by Moore (1979). 
The leading-order asymptotic behaviour of the two systems is essentially identical. 

The result of Moore's analysis is that 

umA,,(t) 2: C(t)  m-8 exp [m( 1 + it + In (aut))], 

1 + itc+lntC = In (4/u), 

(2.8) 

where B is a normalization factor dependent only on t. A t  a critical time t, defined by 

(2.9) 

the coefficients decay algebraically rather than exponentially with increasing m. 
The approximation (2.8) is valid for 1 < m < t < t,. A detailed discussion of the im- 
portance of the higher-order corrections and an improved estimate of the critical time 
may also be found in Moore's paper. 

We have integrated numerically the system (2.5) for A,. The results for u = 0*0005 
are plotted in figure 2. The quantity B, = In IA,(t)l is plotted vs. In m for 1 6 m < 15 
at various times. At time t = 11.30, the results for B, lie on a straight line whose slope 
is about - 2.51. The critical time predicted by (2.9) is 11.15, in good agreement with 
the computed value. 

3. Taylor series expansion 
In  this section, the analytic structure of the prototype of Kelvin-Helmholtz in- 

stability evolving from the initial conditions (1.8) will be examined using Taylor 
series in time t. The interface z(e,  t) is expansible as 

OD 

z ( e , t )  = e +  t"Z,(e). 
n= 1 

(3.1) 
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FICWRE 2. A plot of In lAml v.9. In n showing the behaviour of the spectrum for t.he system of 
equations (2.2) at times (a) t = 10.04, (b)  t = 11.15, (c) t = 11.30, (d)  t = 11-48. The straight 
lino fit at the singularity time 1 = 11.30 gives a slope N - 2.51. 

At t = 0, the interface is flat and y ( e )  = 1 +a cos e so the Birkhoff equation gives 

az*(e,t = 0 )  1 
= - ~j: (1 +a cos e') cot i ( e  - el) de', 

at 4nri 

which is a periodic Hilbert transform in e.  The integral is easily evaluated, giving 

&(e, t = 
O )  = iiasine. 

at ZAe)  = (3.3) 

In order to obtain recursion relations for Z J e )  (n > l),  the Birkhoff equation is 
regularized by adding and subtracting a known principal-value integral. Since 

Birkhoff's equation may be rewritten as 

The first-order contribution (3.3) is a finit.e Fourier series. This result holds for the 
higher-order terms in the sense that 

n 

m=O 
Zn(e )  = Znmsinme, (3.5) 

at3 will be shown below. For our prototype, it is possible to compute not only A,, as 
simple power series in t ,  but also their higher-order corrections A,,, (p 2 2) as well as 
the exact-Taylor-series coefficients Zn(e ) .  It should be noted that Moore's initial 
condition z(e, t = 0 )  = e + E sin e ,  y(e) = 1, 
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does not have this property as the cotangent in (3.4) induces all modes to contribute to 
&(e, t = 0)/8t. 

The recursion relations for Zn(e) are derived by substituting (3.2) into (3.4) and 
equating like powers of time: 

Here 
(3.7) 

while Vn satisfies the recurrence relation 

with Z,,(e) = e, V,(e) = cot &(e - e‘). (3.9) 

The functions Rn(e, e’) and l/Vn(e, e’) vanish linearly as e --f e’ so that the integrals 
in (3.6) are finite. To evaluate the required integrals it is convenient to define the 
quantities 

I P,,(e, e’) = Rn(e, e‘)/(cos e - cos e’), 

Yn(e, e’) = (cos e - cos e’) V,,(e, e‘). 
(3.10) 

Then, equations (3.6)-(3.8) become 

(3.11) 
y(e’) dZ,(e)/de - y(e) dZ,(e’)/de‘ 

cos e - cos e‘ Pn = 9 (3.12) 

Y, = - #(Zn(e) - Zn(e’)) (COB e - cos e‘) 

We prove that Zn(e) is expansible as in (3.5) by induction. The result has already 
been shown for n = 1. Assume the result holds up to n. With the initial condition 
y(e) = 1 + a cos e and noting the resulting odd symmetry of x(e),  it follows that the 
numerator in (3.12) is a difference of two polynomials in cos e and cos e’. (Here we use 
the fact that cos ne is a polynomial in COB e.) Such a function is always divisible by 
cos e - cos e’ so P,, has a finite Fourier series involving modes up to order n. Similar 
symmetry arguments may be applied to the recursion relation for Y, to show that i t  
has a finite Fourier series involving modes up to order n + 1. Thus, Z,+,(e) may be 
expanded in terms of at  most n + 1 Fourier modes as in ( 3 4 ,  completing the inductive 
proof. 

The first 7 series coefficients have been computed exactly using the symbolic 
manipulation program MACSYMA (see the appendix). Contributions to the y co- 
ordinate of the interface occur for every odd order in t ,  while contributions to the x 
co-ordinate occur in every even order. It is easy to check that the Taylor series obtained 
for Fourier mode m including only its leading-order contribution, which is @am) ,  is 
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the power series solution for A,& (see Q 2). A t  any order in time only a finite number 
of high-order corrections enter so it is possible to write the Taylor series for the sub- 
systems Am2, Am4, and so on. 

In order to gain further insight into the existence of the singularity it is necessary 
to carry the series computation much farther than the exact results given in the 
appendix to order t7. This may be accomplished by performing the mounting algebraic 
work in floating-point arithmetic rather than symbolic arithmetic. An examination 
of the recurrence relations (3.11)-(3.13) shows that the computational time required 
to compute to order tn is dominated by the nth derivative of the cotangent kernel, 
namely Y,. As Y, is a finite Fourier series in two variables with O(n2) terms, a straight- 
forward calculation involving series multiplication and division requires O(n8) opera- 
tions so the work necessary to obtain all coefficients of terms up to tn grows like n7 for 
large n. 

It is possible to reduce the computational time to O(n5) by using transform methods 
(Orszag 1970). The Fourier series for Y, may be written as a sum of separable functions: 

Y,(e, e') = Dij[sin ( i e )  cos ( j e ' )  +sin ( j e )  cos ( ie )  
i ,  3' 

04i ti<,+ 1 +sin ( j e )  cos (ie') +sin (ie')  cos ( j e ) ] .  (3.14) 

Using separability, the number of operations required to transform Y,(e, e') from its 
Fourier representation to configuration space at n discrete points in e and e' is O(n3) 
rather than O(n4). In configuration space only O(n4) operations are necessary to 
evaluate the right side of (3.13) so that the operation count to compute Y, from 
Yk (k < n) and 2, grows only like n4. Once Pk, Yk, and 2, for k < n have been evaluated 
in configuration space, Z,+,(e) is evaluated from (3.11) by computing the integrand 
and performing the integral. As the result must be a finite Fourier series in e, the 
integral may be evaluated exactly by the trapezoidal rule. A slight technical com- 
plication arises from the fact that it is inconvenient to evaluate Pk or Yk at the points 
e = e'. While Pk and Yk are certainly finite at these points, it is more efficient to apply 
an alternating Gaussian quadrature to perform the integral in (3.11) (see Menikoff & 
Zemach 1980). Finally, in order to proceed to higher n an inverse transform of P,, 
Y,, and Zn+, is performed and their modal amplitudes are stored rather than their 
configuration space values. This allows more efficient use of memory resources as it 
becomes possible to take advantage of symmetries in the Fourier coefficients. Since 
the work involved at each step of this recursive procedure is O(n4), the total work 
necessary to calculate Z,(e)  for n < N is O(N5).  

The coefficients Z,(e) have been computed for n < 38, when a = 1 and a = & and 
for n < 24 when a = 9, a, and Q. All calculations were performed with 96-bit mantissa 
arithmetic (29 digits of accuracy). The proper execution of the program has been 
checked for low orders using the exact results given in the appendix. At higher orders, 
a useful computational test is given by constructing the Taylor series for the energy 
of the system: 

It can be shown using (1.3) tha t  

_ -  - 0. 
dE 
dt 

(3.16) 
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The Taylor series in t for E( t )  has a non-zero constant term while all higher-order 
terms vanish by virtue of (3.16). The nth time derivative of the energy is given by 

= -/2nY(e')de'/ozny(e)de 1 5 (k+ 1) 
( % + I )  0 k=ocose-cose' 

Equation (3.17) provides a non-trivial sum rule check on each stage of the computation 
and, with the proper scaling of the coefficients Z,, gives an indication of the cumulative 
roundoff error incurred at each order. For the calculation to O(t3*) with a = 1 the 
computed coefficients are accurate to at  least 12 significant digits. 

4. Analysis of the Taylor series 

For 1 c t,, the spectrum seems to have the form 
A good way to examine x(e, t) for possible singularities is to study its spectrum in e. 

[Arn[ 2: Cm-lexp (-ma@)), (4.1) 

where A&) is defined by (1.5). Thus, the mean square gradients a@) of the interface 
defined by 

02 a= 8% 2 a@)(t) =lo lGl de = k e p  = !2(,p)t2n (4.2) 
k n=O 

diverges at the critical time t ,  defined by 

4 t C )  = 0, 

provided P 2 iw- 1). 

Here the series expansion of a@)@) involves only 
reversal invariance. Equation (4.3) is an effective 
time t,, if it  exists. 

(4.3) 

(4.4) 

even powers o f t  because of time 
way to determine the singularity 

For-t 21 t,, Q@)(t) may be expected to behave like 

Q(P'( t )  2: C,( 1 - t 2 / t y ( p ) ,  (4.5) 

so it will diverge or vanish according to the sign of the critical exponent &(I,). The 
function S(p) gives an estimate for B in (4.1): If the spectrum of the interface at t, 
behaved like k-p as k -+ 00 then the largest zero of &(I,) would be p = B - 4. 

The coefficients Qkp) for I, = 2,3,4,5 when a = 1 are listed in table 1. The analysis 
of these series borrows heavily from the methods devised by Domb & Sykes (Gaunt 
& Guttmann 1974), and Baker (1975) for expansions appearing in the study of critical 
phenomena. 

From table 1 we see that the coefficients QLfi) are all of positive sign. This is an indi- 
cation that the nearest singularity in the complex-t plane lies on the positive real axis. 
An examination of the ratios i2g)/QFLl suggests that the region of convergence of the 
series (4.2) for lY2)(t) is roughly It1 < 1. A more accurate estimation of the radius of 
convergence is obtained using a Domb-Sykes plot. In figure 3, the inverse ratios 
!2iP)/Q$r!l are plotted versus l / n .  If the nearest singularity has the asymptotic form 

or 

a 2: C(t,-t)-8 (S * 0 , 1 , 2 ,  ...) 

R N C(t,-t)-aln ( t , - t )  (6 = 0, 1,2,  ...), 
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0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0 0 0 
0~125000000 0.125 000 000 0.125 000 000 
0.390625000 x 10-O' 0.132812600 0.507812500 
0.923394097 x lo-'* 0-391 818576 x 0.158973524 
0.504416814 x lO-O* 0-429388621 x lo-" 0.416990783 
0.271 300166 x 0.321 708860 x 0.420877972 
0.174238933 x 10-O' 0.288336815 x 10-O' 0.533978858 
0.115871 681 x 0.249430831 x 10-O' 0.597037 690 
0.812562331 x 10-O' 0.220992160 x 10-O' 0.668313975 
0.584792497 x 10-O' 0.195277639 x 10-O' 0.723338279 
0.431 048874 x loa3 0.173085649 x 10-O' 0.789785458 
0.323085485 x 10-O' 0.153331 115 x 10-O' 0.804555413 
0.245582828 x 1O-O' 0.135808124 x 10-O' 0.829084252 
0*188769587 x 10-0' 0.120 196732 x 10-O' 0.843582801 
0.146488791 x 10-O' 0.106296617 x 0.849078269 
0.114547342 x 1O-O' 0.939210294~ 10-Oa 04346452226 
0.901 909211 x 0.829 127558 x 0.838717451 
0.714297 727 x 0.731 300987 x lO-O* 0.820871 036 
0.568 609095 x 0.644462382 x lO-O* 0.799890201 
0.454675424 x 0.567463898 x 0*774699672 

0 
0.125000 000 
0.200781 250 x loo1 
0.638140191 
0.453069114~ 100' 
0.593048079 x loo1 
0.108533694~ 1@* 
0.155040962 x 10'' 
0.2 19 459 403 x loo* 
0-290074910 x loos 
0.370 182 782 x loo* 
0.455777 991 x 10'' 
0.545741 516 x 10"' 
0.637658979 x 100' 
0*729686076 x loo' 
0.819907 315 x 10"' 
0.906668 172 x 100' 
0-988501 060 x 10" 
0*106418611 x loo' 
0.113274246 x looa 

TABLE 1. Coefficients a:) (0 < n < 19) of t,he series expansion of n c p ) ( t )  
in powers of t z  when a = 1 

Q Q  

Q W 
Q 

0 0.1 0.2 

1 ln 
FIQURE 3. A Domb-Sykes plot of the ratios R, = nc,.'/@2, versus l/n for p = 2, 3, 4, 5 for 
the initial condition (1.8) with a = 1. The straight line extrapolations correspond to Neville 
table estimates for l/t:. Note t,hat all four series seem to have a singularity at t, 1: 1.08. 
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t 
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* (c) 

* ( b )  

* (a )  

- 20 

FIGURE 4. A plot of In ]A,( 218. In n for the initial condition (1.8) with a = 1 at times (a) 
t = 0.864, (b)  t = 0.972, (c) t = 1-08. The straight line fit gives a slope of ~ 2 . 7 .  

then from Darboux's theorem the inverse ratios R$') = C2$)/Q$?l behave like l / n  as 
n-toowith 

Examination of the Domb-Sykes plots for W) reveals that all four functions may 
have a common singularity. Estimates based on the Neville table and Pad6 approxi- 
mants suggest that the critical time for a = 1 is 

t, = 1.08 & 0.02. 

If the mode amplitudes A, behave like n-8 (n + co) at t, then the critical exponent 
S(2) for i2(2)(t) should be close to 0. Examination of the Domb-Sykes plot shows that 
S(2) 1: - 0.5 & 0.1. A crude linear interpolation of S(p) us. p indicates that the largest 
zero of S(p) occurs for p 1: 2.3, which implies that A ,  behaves like n-8 as n + 00 with 
p N 2.8 rather than p = 2.5. A more direct estimate of B is obtained by plotting 
In IA,(t)l versus In n near the singularity time as was done in the previous section for 
the subsystem An,,. The values of A,(t) were computed by Pad6 summation of the 
time series for each mode. The number of series terms computed for A,(t) decreases 
with increasing n so that reliable Pad6 estimates are available near the singularity 
time only for the first 15 modes. The results plotted in figure 4 are consistent with a 
value of p = 2-7 & 0-2. 

We have performed identical series analyses on Q ( P ) ( t )  for a = ?j, 4, & and & in 
order to examine the variation of t, with a. These series have been computed to 
O(t24) (O(tS8) for a = A). Again the coefficients are all of positive sign indicating that 
the nearest singularities lie on the real time axis. The best estimates from Domb- 
Sykes plots and Pad6 tables for t,(a) are plotted in figure 5.  For purposes of comparison 
the prediction (2.9) of Moore's asymptotic analysis is also plotted. It is clear that, as 
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-3.0 -2.0 -1.0 0 1 .o 
In a 

FIGURE 5. A plot of tc VB. In a for the initial condition (1.8). The solid line ie Moore’e 
leading-order asymptotic approximation to tc(a) given by (2.8). 

a + 0, the critical times agree qualitatively with the asymptotic result (2.9). For 
a = O(l) ,  the critical time is underestimated by (2.9). 

Using the series analysis methods, it  is difficult to obtain reliable estimates for t, 
for values of a less than A. The distance between the putative singularity and the 
origin (t = 0 )  increases as a + 0 and so more coefficients in the series are necessary in 
order to resolve the analytic background and the singularity. 

It is of interest to use the high-order Taylor series in t for the modes in order to 
simulate the evolution of the sheet. Since A, N n-e.7 at t = t, the interface itself remains 
smooth as does its first derivative with respect to position. The curvature diverges 
weakly along some portion of the interface, as do all higher derivatives. 

We have used Pad6 approximants in t to evaluate the Fourier coefficient A,(t) in 
(1.5). We also apply Pad6 approximants in e for fixed t to estimate the sum of (1 3). 
In  figures 6 and 7 ,  the interface x(e)  + iy(e)  and the true vortex sheet strength 

f3 = r ( e ) / ( ( d x / W +  ( d Y / W ) * ,  

respectively, are plotted as functions of x. As the sheet compresses about the point 
of roll-up the sheet strength w increases. At the singularity time the vorticity distribu- 
tion forms a cusp. When the singularity first forms, the interface is only slightly dis- 
torted and possesses none of the features associated with sheet roll-up (as previously 
noted by Moore). 

5. Conclusions 
The use of extended time series in analysing our prototype of Kelvin-Helmholtz 

instability is by no means a rigorous procedure. The indications that a physical singu- 
larity can form in a finite time are only suggestive, and deeper analysis is required to 
justify rigorously the existence of such a singularity. Coupled with the work of Moore 
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FIGURE 6. A plot of the interface z(e, 1) for the initial condition (1.8) with a = 1 at times (a) 
t = 0.864, (b)  t = 0.972, and (0)  t = 1.08. Note that at the singularity time t ,  2: 1.08 the inter- 
face is only slightly deformed. 
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FIGURE 7. A plot of the vortex sheet strength w ( 2 ,  t )  v8.2 (see text) for the initial condition 
(1.8) with a = 1 at times (a) t = 04364, (b)  t = 0.972 and (c) t = 1.08. Note that at the singu- 
larity time w(z, t )  has a cusp at the roll-up point 2 = 0. 
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(1979) and Damms (unpublished), our results do provide evidence that the vortex 
sheet model is valid for only a finite time unless the sheet undergoes sufficiently rapid 
stretching (Moore 1976; Moore & Griffith-Jones 1974). 

The slight differences between, the observed algebraic behaviour at t = t, for the 
amplitudes lAnl and the asymptotic estimates may be attributable to the moderate 
values of a used in this work. Moore’s asymptotic theory is only valid when -In a 9 1. 
However, for a = y$ the measured spectrum is still roughly 72-29, although the un- 
certainty is greater here as fewer reliable modes are available. The higher-amplitude 
corrections An2, And, . . . may be appreciable for the present range of values of a, but 
it is also possible that for our prototype these corrections behave in a different way 
from the case analysed by Moore. Finally, i t  is known that the self-consistent measures 
of accuracy in series analysis methods can be misleading (Nickel 1980) and so we have 
assignd what we felt to be conservative error bars in assessing the data. 

One extension of the present work is to the study of the analytic structure of two- 
layer irrotational dynamics where buoyancy, surface tension, and pressure forces are 
taken into account. For these cases, the function y(e) is no longer a Lagrangian in- 
variant. If only buoyancy effects are considered y(e, t )  satisfies the equation (Baker, 
Meiron & Orszag 1980) 

Baker et a2. (1980) have used (5.1) together with (1.3) to simulate the Rayleigh- 
Taylor instability numerically. For the values of the Atwood ratio 

0 < ( P ‘ - P ) l ( P ’ + P )  < 1, 

the interface rolls up due to Helmholtz instability and the vortex sheet model becomes 
unreliable. For Atwood ratio 1 in which the fluid falls freely into a vacuum there is 
no roll-up and an increase in the number of retained vortices does improve the des- 
cription of the sheet. 

It can be shown that, for an initial condition of the form 

y(e, t = 0 )  = asin e, z(e, t = 0 )  = e, (5.2) 

the interface and y(e, t )  have Taylor series of the form 

m r  

x(e, t )  = e + 2 tn 2 x,, sinje, 
n=l j=O 

I m n  

n = l  , = o  
y(e,t) = tn Ynjcosje, (5.3) 

J m nfl 

n=O n=O 
y(e, t )  = x tn x rnj sinje. 

so that these systems may be studied for any Atwood ratio by the methods discussed 
above. Results for these prototype problems will be presented in a later paper. 

Similarly, prototypical free-surface wave-dynamics1 problems may be constructed. 
Baker, Meiron & Orszag (1982) have successfully applied vortex techniques to a wide 
variety of nonlinear surface and internal wave phenomena. The mathematical struc- 
t,ure of prototype problems may be studied by the present techniques. 
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Appendix 

initial condition (1.8) : 
The Taylor-series coefficients Z,(e) for 0 < n < 7 of the interface z(e,t) for the 

Zo(e) = e; 
Z,(e) = ti[usine]; 
Z2(e) = a[ - &a sin e - ifd sin 2e]; 

Z3(e) = ~i[~(a-u3)sine+&dsin 2e]; 
Z,(e) = &[(-&-&u3)sine+( -&a2+&~4)ain2e-&dsin3e-+~sin4e]; 

Z,(e) = hi[(* - &u3 + +5) sine + (&u2 - &a4) sin 2e 

Z,(e) = &[( - &u - &a3 + &us) sin e + ( - &us + & u 4  - &us) sin 2e 
+ (&u3- &u5) sin 3e + &u4 sin 4e]; 

+ ( - &$u3+&u5) sin 3e + ( - + 4 + & d )  sin 4e 

- &u6 sin 6e - &a6 sin 6e] ; 

+ (&u2 - +&d) sin 2e + (mu lo1 3 -&$$us+ G u 7 )  sin 3e 
+ (*a4 - &u6) sin 4e + (a a5 - &u7) sin 5e + (&j+6) sin Se]. 

Z7(e) = &[(&a - h a 3  t M 6 u 5  - A.7) sin e 
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